Application of Quasi-Monte Carlo Methods to PDEs with Random Coefficients – an Overview and Tutorial

نویسندگان

  • Frances Y. Kuo
  • Dirk Nuyens
چکیده

This article provides a high-level overview of some recent works on the application of quasi-Monte Carlo (QMC) methods to PDEs with random coefficients. It is based on an in-depth survey of a similar title by the same authors, with an accompanying software package which is also briefly discussed here. Embedded in this article is a step-by-step tutorial of the required analysis for the setting known as the uniform case with first order QMC rules. The aim of this article is to provide an easy entry point for QMC experts wanting to start research in this direction and for PDE analysts and practitioners wanting to tap into contemporary QMC theory and methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A qMC-spectral method for elliptic PDEs with random coefficients on the unit sphere

We present a quasi-Monte Carlo spectral method for a class of elliptic partial differential equations (PDEs) with random coefficients defined on the unit sphere. The random coefficients are parametrised by the Karhunen-Loève expansion, while the exact solution is approximated by the spherical harmonics. The expectation of the solution is approximated by a quasi-Monte Carlo integration rule. A m...

متن کامل

Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients

We consider the application of multilevel Monte Carlo methods to elliptic PDEs with random coefficients. We focus on models of the random coefficient that lack uniform ellipticity and boundedness with respect to the random parameter, and that only have limited spatial regularity. We extend the finite element error analysis for this type of equation, carried out in [6], to more difficult problem...

متن کامل

Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients

In this paper we analyze the numerical approximation of diffusion problems over polyhedral domains in R (d = 1, 2, 3), with diffusion coefficient a(x, ω) given as a lognormal random field, i.e., a(x, ω) = exp(Z(x, ω)) where x is the spatial variable and Z(x, ·) is a Gaussian random field. The analysis presents particular challenges since the corresponding bilinear form is not uniformly bounded ...

متن کامل

A Semiparametric Quantile Panel Data Model with An Application to Estimating the Growth Effect of FDI∗†‡

In this paper, we estimate the impact of FDI on economic growth in host countries by proposing a new semiparametric quantile panel data model with correlated random effects for fixed T , in which some of the coefficients are allowed to depend on some smooth economic variables while other coefficients remain constant. A three-stage estimation procedure based on quasi-maximum (local) likelihood e...

متن کامل

Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients

We consider the numerical solution of elliptic partial differential equations with random coefficients. Such problems arise, for example, in uncertainty quantification for groundwater flow. We describe a novel variance reduction technique for the standard Monte Carlo method, called the multilevel Monte Carlo method. The main result is that in certain circumstances the asymptotic cost of solving...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017